
 #SharkFest16 • Computer History Museum • June 13-16, 2016

SharkFest ‘16

Sake Blok
sake.blok@SYN-bit.nl

June 15th, 2016

Relational Therapist for Computer Systems | SYN-bit

Wireshark CLI tools and Scripting

 #SharkFest16 • Computer History Museum • June 13-16, 2016

About me…

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Agenda

• Introductions
• Why use CLI tools?  
... and how?

• Wireshark CLI tools
• Useful shell commands
• Some Scripting Examples
• Q&A

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Why use the CLI tools?

• When GUI is not available (shell access)
• Quick and Easy Analysis
• Postprocessing results

- GUI is powerful & interactive, but fixed functionality
- CLI combined with other tooling is very flexible

• Automation

CLI not only when GUI is unavailable

 #SharkFest16 • Computer History Museum • June 13-16, 2016

How?

• What information do I need?
- visualize your output 

• What (raw) data sources do I have?
- Know the output formats of your data sources 

• What tools are available?
- What can they do, browse through manpages for unknown options

Practice, Experiment & be Creative :-)

 #SharkFest16 • Computer History Museum • June 13-16, 2016

(some) Wireshark CLI tools

• tshark
• dumpcap
• capinfos
• editcap
• mergecap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

tshark (1)

• CLI version of wireshark
• Similar to tcpdump, but statefull / reassembly  
.... and MANY full protocol decodes

• uses dumpcap as capture engine
• standard options: -D, -i, -c, -n, -l, -f, -R, -s, -w, -r
• name resolving (-n)
• time stamps (-t <format>)
• decode as (-d tcp.port==8080,http)
• preferences (-o <pref>:<value>)

 #SharkFest16 • Computer History Museum • June 13-16, 2016

tshark (2)

• output formats (-V or -T <format>)
- default: summary, uses column prefs
- Verbose (-V), hex dump (-x), protocol selection (-O)
- PDML (-T pdml)
- fields (-T fields -E <sep> -e <field1> -e <field2> …)  

• statistics (-z …)
- protocol hierarchy (-qz io,phs)
- conversations (-qz conv,eth , -qz conv,tcp)
- i/o statistics (-qz io,stat,10,ip,icmp,udp,tcp)

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 1: Using different output formats

• Show normal output (‘tshark -r http.cap’)
• Show full decodes ('tshark -r http.cap -V')
• Show PDML (XML) decodes ('-T pdml')

http.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 2: non-standard ports

• Display the contents of the with tshark. What protocol is recognized
for port 1234?  

• Use the option '-x' to view hex/ascii output too. What protocol is
transported over tcp port 1234? 

• Now use 'tshark -r port-1234.cap -d tcp.port==1234,http' to decode
tcp port 1234 as http. Is it possible to filter on http now?

port-1234.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 3: protocol preferences

• Display the contents of file ssl.cap with tshark, do you see http traffic?  

• Use '-o ssl.keys_list:192.168.3.3,443,http,key.pem', do you see http
traffic now?  

• Which version of OpenSSL is used by the webserver (use '-V' and
look at the “Server: <xxx>” http header)

ssl.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 4: Saving interesting data

• Use tshark with option '-o tcp.desegment_tcp_streams:TRUE' and
filter on http

• Now use tshark with option '-o tcp.desegment_tcp_streams:FALSE'
and filter on http.
- How is this output different from the output in 4a?

• Do 4a and 4b again, but now use '-w' to write the output to 4a.cap
and 4b.cap respectively. Read 4a.cap and 4b.cap with tshark.
- Can you explain the difference?

http.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 5: tshark statistics

• Create a protocol hierarchy with '-qz io,phs'.
- Which protocols are present in the file?

• Create a ip conversation list with '-qz conv,ip'
• Create a tcp conversation list with '-qz conv,tcp'
• Create some io statistics with '-qz io,stat,60,ip,tcp,smtp,pop'
• Did the previous commands give you an overview of the contents of
mail.cap?

mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

dumpcap

• used by (wire|t)shark  
... for privilege separation

• can be used separately
• options similar to tshark
• fast! only network->disk
• stateless! so traces can run forever
• ring buffer feature extremely useful:

- dumpcap -i 5 -s0 -b filesize:16384 -files:1024 -w ring.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

capinfos

• display summary of a tracefile
• all info vs specific info
• Or in table form with -T

$ capinfos example.cap
File name: example.cap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 3973
File size: 1431813 bytes
Data size: 1368221 bytes
Capture duration: 1299.436650 seconds
Start time: Thu Jan 17 11:37:16 2008
End time: Thu Jan 17 11:58:55 2008
Data rate: 1052.93 bytes/s
Data rate: 8423.47 bits/s
Average packet size: 344.38 bytes

$ capinfos -ae sharkfest-*.cap
File name: example.cap
Start time: Thu Jan 17 11:37:16 2008
End time: Thu Jan 17 11:58:55 2008

File name: sharkfest-2.cap
Start time: Thu Jan 17 11:39:27 2008
End time: Thu Jan 17 12:02:52 2008

 #SharkFest16 • Computer History Museum • June 13-16, 2016

editcap (1) : select packets

• select frame ranges or time ranges
- editcap -r example.cap tmp.cap 1-1000 2001-3000
- editcap -A "2008-01-17 11:40:00" -B "2008-01-17 11:49:59" example.cap tmp.cap  

• split file in chunks
- editcap -c 1000 example.cap tmp.cap
- editcap -i 60 example.cap tmp.cap  

• remove duplicate packets
- editcap -d example.cap tmp.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

editcap (2) : change packets

• change snaplen
- editcap -s 96 example.cap tmp.cap  

• change timetamps
- editcap -t -3600 example.cap tmp.cap  

• change link layer type
- editcap -T user0 example.cap tmp.cap  

• change file type
- editcap -F ngsniffer example.cap tmp.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

mergecap

• merge packets in multiple files based on their timestamps
- mergecap -w out.cap in-1.cap in-2.cap  

• ... or just append the packets from each file
- mergecap -a -w out.cap in-1.cap in-2.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 6: splitting with edit cap

• Execute the command 'editcap -i 60 mail.cap tmp.cap'.
- How many files are created?

• Use 'capinfos -Tcae tmp*' to display a summary of these new files.
- Why are the timestamps not exactly 60 seconds apart?

• Remove the 'tmp*' files
• Execute the command 'editcap -c 1000 mail.cap tmp.cap'.

- How many files are created?
• Use 'capinfos -Tcae tmp*' to display a summary of these new files.

mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 6: merging with mergecap

• Use 'mergecap -w mail-new.cap tmp*'.
- Is the resulting file exactly the same as mail.cap?  

(tip: use 'cmp <file1> <file2>')

tmp*.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Demo 7: editing timestamps

• Adjusting timestamps with editcap
- Use 'editcap -t <delta>' to create a new tracefile (tmp.cap) where the first packet

arrived exactly at 11:39:00 (tip: use '-V -c1' to see the exact timestamp of the first
packet). What is your '<delta>'?

- What is the timestamp of the last packet in the new file? Are all packets adjusted with
the same '<delta>'?

mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Getting Help

• Use “<command> -h” for options
- ... check once-in-a-while for new features  

• Read the man-pages for in-depth guidance
- see: http://www.wireshark.org/docs/man-pages/

http://www.wireshark.org/docs/man-pages/

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Useful shell commands

• bash internals:  
|, >, for … do … done, `<command>`

• cut
• sort
• uniq
• tr
• sed
• awk
• scripting (sh/perl/python/…)

 #SharkFest16 • Computer History Museum • June 13-16, 2016

| , > , for … do … done

• Command piping with '|'
- ls -1t | head 

• Output redirection with '>'
- ls -1t | head > 10-newest-files.txt  

• Looping with for … do … done
- for word in 'one' 'two' 'three'; do echo $word; done

 #SharkFest16 • Computer History Museum • June 13-16, 2016

`<command>` , variable assignments

• Command evaluation with backtics (``)
- for file in `ls -1t | head`  

do  
 echo $file  
 head -1 $file  
 echo ""  
done > firstlines.txt  

• Variable assignments
- backupfile=`echo ${file}.bak`

 #SharkFest16 • Computer History Museum • June 13-16, 2016

cut

• By character position (-c <range>)
- cut -c1-10 /etc/passwd 

• By field (-f<index> [-d '<delimiter>']
- cut -d ':' -f1 /etc/passwd

 #SharkFest16 • Computer History Museum • June 13-16, 2016

sort

• General alphabetic sort (no option)
- sort names.txt 

• Reverse sorting (-r)
- sort -r names.txt  

• Numerical (-n)
- sort -n numbers.txt  

• Or combined:
- du -ks * | sort -rn | head

 #SharkFest16 • Computer History Museum • June 13-16, 2016

uniq

• De-duplication (no option)
- sort names.txt | uniq  

• Show only 'doubles' (-d)
- sort names.txt | uniq -d 

• Count occurrences (-c)
- sort names.txt | uniq -c

 #SharkFest16 • Computer History Museum • June 13-16, 2016

tr

• Translate a character(set)
- echo "one two" | tr " " "_"
- echo "code 217" | tr "[0-9]" "[A-J]"
- echo "What is a house?" | tr "aeiou" "eioua" 

• Delete a character(set)
- echo "no more spaces" | tr -d " "
- echo "no more vowels" | tr -d "aeiou"
- cat dosfile.txt | tr –d "\015" > unixfile.txt

 #SharkFest16 • Computer History Museum • June 13-16, 2016

sed

• Stream editor
• Very powerful ‘editing language’  

• Some simple examples:
- deleting text:  

sed -e 's/<deleteme>//'
- replacing text:  

sed -e 's/<replaceme>/<withthis>/'
- extracting text:  

sed -e 's/^.*\(<keepme>\).*\(<andme>\).*$/\1 \2/‘

 #SharkFest16 • Computer History Museum • June 13-16, 2016

awk

• Pattern scanning and processing language
• Also a very powerful language 

• Some examples:
- netstat -an | \ 

awk '$1~"tcp" {print $4}' | \ 
sort | uniq –c  

- … | awk '{printf("%stcp.port==%s",sep,$1);sep="||"}'

 #SharkFest16 • Computer History Museum • June 13-16, 2016

scripting

• parsing output when command piping is not enough
• automate execution of tshark/dumpcap/mergecap etc
• use your own favorite language 
(sh/perl/python/etc)

do anything you want :-)

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Some Examples

• Using command piping
- Counting http response codes
- Top 10 URL's
- All TCP sessions which contain session-cookie XXXX  

• Using scripting
- All sessions for user XXXX (shell script)

example.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 1: Counting http response codes (1)

• Problem
- I need an overview of http response codes 

• Output
- table with http response codes & counts 

• Input
- Capture file with http traffic

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 1: Counting http response codes (2)

• Steps to take
- print only http response code
- count
- make (sorted) table

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 1: Counting http response codes (3)

• Command:
- tshark -r example.cap -R http.response  

 -T fields -e http.response.code |\ 
 sort | uniq -c  

• New tricks learned:
- -T fields -e <field>
- | sort | uniq -c

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 2: Top 10 requested URL's (1)

• Problem
- I need a list of all URL’s that have been visited 

• Output
- Sorted list with requested URL’s and count 

• Input
- Capture file with http traffic

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 2: Top 10 requested URL's (2)

• Steps
- Print http.host and http.request.uri
- Strip everything after “?”
- Combine host + uri and format into normal URL
- count url’s
- make top 10

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 2: Top 10 requested URL's (3)

• Command:
- tshark -r example.cap -R http.request \  

 -T fields -e http.host -e http.request.uri |\  
sed -e 's/?.*$//' |\ 
sed -e 's#^\(.*\)\t\(.*\)$#http://\1\2#' |\ 
sort | uniq -c | sort -rn | head 

• New tricks learned:
- remove unnecessary info : sed -e 's/?.*$//'
- transform : sed -e 's#^\(.*\)\t\(.*\)$#http://\1\2#'
- top10 : | sort | uniq -c | sort -rn | head

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 2: Top 10 requested URL's (3)

• Command:
- tshark -r example.cap -R http.request \  

 -T fields -e http.host -e http.request.uri |\  
sed -e 's/?.*$//' |\ 
sed -e 's#^\(.*\)\t\(.*\)$#http://\1\2#' |\ 
sort | uniq -c | sort -rn | head 

• New tricks learned:
- remove unnecessary info : sed -e 's/?.*$//'
- transform : sed -e 's#^\(.*\)\t\(.*\)$#http://\1\2#'
- top10 : | sort | uniq -c | sort -rn | head

http.request.fu
ll_uri

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 3: All sessions with cookie XXXX (1)

• Problem
- I know in which “session” a problem exists, but I need all data from that session to

work it out  

• Output
- New capture file with whole tcp sessions that contain cookie

PHPSESSID=c0bb9d04cebbc765bc9bc366f663fcaf 

• Input
- Capture file with http traffic

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 3: All sessions with cookie XXXX (2)

• Steps
- select packets that contain the cookie
- print the tcp stream numbers
- create new filter based on the stream numbers
- use filter to extract tcp sessions
- save packets to a new capture file

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 3: All sessions with cookie XXXX (3)

• Command:
- tshark -r example.cap -w cookie.cap \ 

 -R `tshark -r example.cap -T fields -e tcp.stream  
 -R "http.request and http.cookie contains \  
 "PHPSESSID=c0bb9d04cebbc765bc9bc366f663fcaf\"" |\  
 awk '{printf(“%stcp.stream==%s",sep,1);sep="||"}‘ `  

• New tricks learned:
- tshark -R `<other command that generated filter>`
- awk '{printf("%stcp.stream==%s",sep,$1);sep="||"}'

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 4: All sessions for user XXXX (1)

• Problem
- A particular user has multiple sessions and I need to see all sessions from that user  

• Output
- New capture file with all data for user xxxx  

• Input
- Capture file with http data

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 4: All sessions for user XXXX (2)

• Steps
- print all session cookies for user XXXX
- create new capture file per session cookie  

(see example 3)
- merge files to new output file

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 4: All sessions for user XXXX (3)

#!/bin/bash

file=$1
user=$2

for cookie in `tshark -r $file -R "http.request and http contains $user" \
 -T fields -e http.cookie | cut -d ' ' -f2`
do
 tmpfile="tmp_`echo $cookie | cut -d '=' -f 2`.cap"
 echo "Processing session cookie $cookie to $tmpfile"

 tshark -r $file -w $tmpfile -R `tshark -r $file -T fields -e tcp.stream \
 -R "http.request and http.cookie contains \"$cookie\"" | \
 awk '{printf("%stcp.stream==%s",sep,$1);sep="||"}'`
done

mergecap -w $user.cap tmp_*.cap
rm tmp_*.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Example 4: All sessions for user XXXX (4)

• New tricks learned:
- for … do … done
- <var>=`echo … | …`
- cut -d <FS> -f <x>
- mergecap -w <outfile> <infile1> <infile2> …

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Exercise 8

• Create a new trace file for a specific pop user  
that contains only his pop sessions.

• First get an idea of a typical POP session, use :
- tshark -r mail.cap -R 'tcp.port==64315 and tcp.len>0'

• Use the following steps to create a list of tcp ports used by
user 'sake-test2':
- Use the filter ' pop.request.parameter=="sake-test2" ' to only show

sessions of user sake-test2
- Add '-T fields -e tcp.stream' to the command to just show the tcp

streams.
- Add | awk '{printf("%stcp.stream==%s",sep,$1);sep="||"}' to create a

display filter that will only display packets belonging to the sessions for
user sake-test2. mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Exercise 8 (continued)

- Now use the output of the previous command between backticks to create the new
file:  
tshark -r mail.cap -w sake-test2.cap -R `<previous command>`

- Use 'tshark -r sake-test2.cap -R pop.request.command==USER' to verify that the new
file only contains sessions of user sake-test2. Did we succeed? What went wrong?
How can we fix it?

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Exercise 9

• Creating a separate trace file for each pop 
user automatically.
- Delete the file sake-test2.cap

• Create a list of users with the following steps:
- Use a filter to only select the packets where the pop command was “USER”  

and use '-T fields' to only print the username.
- Use '| sort | uniq' to create a list of unique usernames

mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Exercise 9 (continued)

- Loop through the list of usernames and create the file per user with:  
 
for user in `<command from 9b>`  
do 
 echo $user  
 <command from case 8c with $user as variable> 
done

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Exercise 10 : Challenge!

• Create a shell script
[or a one-liner ;-)]
that produces the
following output:

Mail check times for : sake-test1
11:39:43 : 1 message (2833 octets)
11:40:00 : 0 messages (0 octets)
11:42:33 : 7 messages (25958 octets)
11:45:04 : 6 messages (21538 octets)
11:47:37 : 5 messages (17480 octets)
11:50:09 : 8 messages (32297 octets)
11:52:40 : 5 messages (17017 octets)
11:55:13 : 6 messages (21075 octets)
11:57:46 : 6 messages (20859 octets)
12:00:28 : 7 messages (25416 octets)
12:02:49 : 1 message (3677 octets)

Mail check times for : sake-test2
11:39:44 : 5 messages (14512 octets)
11:40:01 : 6 messages (16811 octets)
11:42:34 : 5 messages (17568 octets)
11:45:05 : 4 messages (8551 octets)
11:47:38 : 6 messages (16337 octets)
11:50:10 : 2 messages (5396 octets)
11:52:42 : 7 messages (20601 octets)
11:55:14 : 5 messages (12089 octets)
11:57:46 : 4 messages (14463 octets)
12:00:22 : 5 messages (15016 octets)
12:02:50 : 4 messages (14805 octets)

mail.cap

 #SharkFest16 • Computer History Museum • June 13-16, 2016

Summary

• Wireshark comes with powerful CLI tools 
(tshark, dumpcap, capinfos, editcap, mergecap)  

• tshark+scripting can complement GUI 

• use little building blocks and combine them

 #SharkFest16 • Computer History Museum • June 13-16, 2016

 #SharkFest16 • Computer History Museum • June 13-16, 2016

FIN/ACK, ACK, FIN/ACK, ACK

Thank You!
sake.blok@SYN-bit.nl

