Common Mistakes in Packet Analysis
Things that make traces harder to read.

Chris Greer, Network Analyst
Packet Pioneer LLC
Presenter

- Chris Greer
 - Packet Pioneer LLC
 - Focused on Network and Application Performance Analysis
 - Protocol Analysis Consulting
 - Deliver training focused on Wireshark, Fluke Networks, other vendors.
Why do I care?

- When analyzing complex problems, every packet counts
Why is it hard?
Or it can look like this...
1. Initially Capturing Too Much Traffic
Trace File Size

- File size at 1Gbps for 5 minutes, 50% utilization
 ~18GB file – approx 300 million packets
 (512 Byte packet average)
- File size for 10Gbps for 5 minutes, 50% util
 ~180GB file – approx 3 billion packets!
Packet Overload

• Even with filtering, locating the root cause of a problem can be overwhelming

• Start small – start at the client if you can
1. Capturing Too Much Traffic

- Large Trace Files can hurt!
2. Not Thinking Before Capturing

- Think before you capture
 - What is the goal?
 - What is “it” that we are capturing?
 - Where do those packets flow?

- Capturing a problem doesn’t mean we can interpret it
3. Capturing Locally on a System

MAC: A
IP: 10.1.0.1

MAC: B
IP: 10.1.0.77

MAC: C
IP: 10.2.0.77

MAC: D
IP: 10.2.0.88

MAC: E
IP: 67.2.10.12

Router

Router/NAT

switch1

switch2

DNS

www.svrint999.com
MAC: F
IP: 74.125.224.143

HTTP
3. Capturing Locally - Problems

- False Alarms with TCP
 - TCP Checksum Errors
3. Capturing Locally - Problems

- Things may look “weird”
- Example – 16,000 byte packets.
- Strange timing issues (0.000000 deltas)
3. Capturing Locally - Problems

- Non-dedicated capture hardware will have a limit!
Wireshark Downloads

- Estimated at 500,000 per month – Wireshark Network Analysis Study Guide
- How many of these downloads are to laptops?
- How many of these users leave the optimization settings at the default rate?

- Very likely – MOST!
Laptops have a purpose

• Email, Web, Work Applications, Music Players, etc...
• Make their owners mostly happy
• Network Analysis is not the purpose of most laptops
Is 1Gig really capturing at 1Gig?

• A laptop likely has a 1Gig interface. Does that mean that it can capture traffic at that rate?
• Most of us agree – no.
• So, when does it start dropping packets?
• At what utilization point do we really need to consider a hardware-based appliance?
Capture limitation on default settings

This is not emulated traffic – it is an easily configurable packet generator.
Capture Limit Results

- Dell XPS 15z – i7 – 8GB Ram
 - Consistently can capture 80Mbps
 - It’s not much better on other systems.
What do dropped packets look like?

- Expert Info:
 - Previous Segment Lost
 - ACKed Lost Packet
 - Out of Order

- Dropped Counter
4. Switches (and Virtualization) make capturing difficult

- A packet is only forwarded to the destination port
- In order to capture it, the analyzer must be inline somewhere

- 3 common capture methods:
 - Hub
 - Span/Mirror
 - Tap
Getting in the path: Span/Mirror

• Copies selected ports, hosts, vlans, or traffic patterns to a monitor port
Getting in the path: Span/Mirror

• **Pros**
 • Most switches already support it
 • Free
 • No need to break a link to configure it
 • Full-duplex traffic analysis

• **Cons**
 • Needs configuration
 • Can’t transmit back into the switch
 • Easy to overload if monitoring many ports
 • Requires documentation
Getting in the path: Taps

• A tap is the best means to capture packets
• Directly monitors the connection inline
Getting in the path: Taps

• Pros
 • True inline analysis
 • Full-Duplex
 • No config necessary
 • Power-fault tolerant
 • Always available for capturing

• Cons
 • High cost compared to hub and span
 • Need to break link the first time it is installed
 • Harder to obtain
Overprovisioning doesn’t only affect laptops

• Capture methods are affected too.
• A SPAN or Mirror port can be overprovisioned
• Especially when spanning a full VLAN or several gigabit ports at one time
SPAN/Mirror Example
SPAN vs. Tap Results

- Tap Capture Results
 - Packets captured: 133,126
 - Delta Time at TCP Setup: 243uSec

- SPAN Capture Results
 - Packets captured: 125,221
 - Delta time of TCP connection setup: 221 uSec
Hardware Based Capture

- Designed to capture at full line rate up to 10Gbps
- Stream to disk with no gaps or drops
- TurboCap NIC from Riverbed
- Cascade Appliance from Riverbed
5. Forgetting Capture Filters

![Wireshark Capture Options](image)
6. Wireshark Not Configured to You

- Too many columns
- Too few columns
- Coloring rules that you don’t understand
7. Taking the Expert Info as gospel

- TCP Checksum errors
- TCP Port Reused
8. Packet-Level distractions

- Allowing packets that are not related to the root issue to distract attention
Thanks!
Common Mistakes in Packet Collection

Chris Greer, Network Analyst
Packet Pioneer LLC