Advanced TCP stuff – we're not in RFC793 anymore

Jasper Bongertz
Airbus Defence and Space CyberSecurity
Blast from the Past – RFC 761

TCP Header Format

| Offset | Reserved | Data | U|R|A|E|R|S|F| |
|--------|----------|------|---|---|---|---|---|---|---|
| Window | G|K|L|T|N|N| |

<table>
<thead>
<tr>
<th>Sequence Number</th>
<th>Acknowledgment Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Port</td>
<td>Destination Port</td>
</tr>
</tbody>
</table>

Checksum | Urgent Pointer
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>Padding</td>
</tr>
<tr>
<td>data</td>
<td></td>
</tr>
</tbody>
</table>
Selective Acknowledgements

• SACK is used to signal packet loss more precisely
 • SACK edges indicate what was received after the missing segment
Selective Acknowledgements

• The ACK number is lower than the left edge values

- ACK 6000
- Left 8000
- Right 9000
- Lost 2000 bytes

- SACK Block 1

- Right 10000
- Lost 1000 bytes

- SACK Block 2

- Right 11000
Demo
D-SACK

• Special SACK blocks:

Sequence number: 1 (relative sequence number)
Acknowledgment number: **4081** (relative ack number)
Header Length: 32 bytes

- 0000 0001 0000 = Flags: 0x010 (ACK)
- Window size value: 4420
 - [Calculated window size: 4420]
 - [Window size scaling factor: -1 (unknown)]
- Checksum: 0x7a22 [correct]
- Urgent pointer: 0
- Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), SACK
 - No-Operation (NOP)
 - No-Operation (NOP)
 - **SACK: 1-1361**
- [SEQ/ACK analysis]
D-SACK or no D-SACK?

Transmission Control Protocol, Src Port: 58779 (58779), Dst Port: 80 (80), Seq: 3970208822, Ack: 3267305285, Len: 0
Source Port: 58779 (58779)
Destination Port: 80 (80)
[Stream index: 1]
[TCP Segment Len: 0]
Sequence number: 3970208822
Acknowledgment number: 3267305285
Header Length: 60 bytes
... 0000 0001 0000 = Flags: 0x01 (ACK)
Window size value: 12291
[Calculated window size: 1573248]
[Window size scaling factor: 128]
Checksum: 0xda2c [validation disabled]
Urgent pointer: 0
Options: (40 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps, No-Operation (NOP), No-Operation (NOP), SACK
 No-Operation (NOP)
 No-Operation (NOP)
 Timestamps: TSecr 380732156
 No-Operation (NOP)
 No-Operation (NOP)
SACK: 2157609960 2158704360 2157583968 2157608592 2157559344 2157582600
 Kind: SACK (S)
 Length: 26
 Left edge = 2157609960
 right edge = 2158704360
 left edge = 2157583968
 right edge = 2157608592
 left edge = 2157559344
 right edge = 2157582600
[TCP SACK Count: 3]

[SEQ/ACK analysis]
[iRTT: 0.104709000 seconds]
[TCP Analysis Flags]
 [This is a TCP duplicate ack]
 [Duplicate ACK #: 1026]
 [Duplicate to the ACK in frame: 25342]
[Timestamps]
Duplicate ACKs and Elephants

• LFN = Long Fat Network (="Elephan")
• Assume you have a network setup like this, what maximum throughput can you achieve?

Diagram:
- 10G
- 1G
- LTE 150MBit
- Radio Tower
- Tablet
WHAT IF I TOLD YOU
"IT DEPENDS"
Demo
TCP Fast Open

• Idea: request data already in the SYN packet
 • saves one full round trip time

• Problem:
 • connection isn't established yet
 • this could lead to very effective SYN flooding attacks

• Solution:
 • using "Fast Open Cookies"
Demo
MultiPath TCP

• Idea: open multiple TCP sessions to transport data between two nodes
 • connections use different IPs
 • allows roaming without connection loss
 • data segments have additional sequence numbers

• Challenge: in the future, analyzing isolated TCP connections is not good enough
 • you need to look at all TCP session that are part of the conversation
Thanks! Questions?
eMail: jasper@packet-foo.com
blog: https://blog.packet-foo.com
Twitter: @packetjay