Root cause in complex networks
Tips and lessons from fast-paced and enterprise financials
Chris Bidwell, chris@cbidwell.com
Chris Bidwell

• Computer scientist & packethead
• Lapsed software developer
• 9 years in networking for financial companies
• All views expressed are my own
Disclosure

• I like when things work properly
• My experience is based on demanding clients to whom any interruption is an outage
• Stability is paramount in my world
• ... expect a lot of TLAs!
Contents

• Background
• Recommendations
 • 'Best practices'
 • Tools
• Strategy
• Examples/anecdotes
Complex Networks

- As networks grow, usually their complexity grows
- 'Creative'/point solutions can be unwieldy
- Documentation is rarely accurate
- Shadow IT solutions
- Software evolves
- Automation can go horribly wrong
Root Cause

• Hunt it to improve efficiency and productivity... sometimes!
• Important in large-scale operations
• Essential to be multidisciplinary
• Know your environment
• Accept that others may not care or understand
Recommendations
Keep Good Time

• Be consistent
• NTP (4+ srcs), PTP
• Use correct timezones + DST
• Validate and monitor your clocks, sync status, grandmaster etc.
• Offset can indicate asymmetric latencies
Log Everything

- emerg, alert, crit, err, warn, notice, [info]
- Local + remote, timestamp both
- 30day+ retention
- Correlate, group, aggregate
- Validate and monitor your logging
- Syslog is (usually) UDP
Poll/Trap Everything

- Interfaces: in/out bits, pkts, err/drops, speed/duplex
 - 1min 'aggressive' but necessary
- Inventories: h/w models/SNs, s/w state: MAC, ARP
 - Routing/CEF?
- Env: PSU + Fans
- Storage, RAM
Backup Everything

• Test your configs are recoverable (!!!)
• RTCD + nightly downloads
• Know how to search your archives
• Track changes over time
e.g. Cisco ASA:
Spot The Difference

```
ciscoasa# show run | inc community
snmp-server host inside 192.168.0.161 community ***** version 2c
snmp-server community *****
ciscoasa#
```

```
ciscoasa# more system:running-config | inc community
snmp-server host inside 192.168.0.161 community private version 2c
snmp-server community private
```

(Also affects PSKs for VPNs)
Capture Everything

- OK, maybe not everything
- Tag, slice, filter where it makes sense
- 'Packet brokers'
- Acknowledge inaccuracy, be grateful for the insight
 - SPANs, TAPs each introduce sources of error
 - NetFlow/sFlow/IPFIX etc.
- Hosts: sysdig
Test For The Unexpected

• Beware of writing tests that only prove what you expect or only test correct configuration & state
• Baseline your setup
• Prove your tools work before you need them
• Check for regression
Underpinnings
Media + L1 Foundations

- Copper
 - Faulty plugs, shorts/cuts: CRC/100Mb
- Fibre/optical
 - Low RX => errors, flapping, err-dis
 - Dirt, kinks, pinching, droop
- RF
 - Line of sight(ish) obstructions, weather
L2+3 Foundations

- MAC, ARP, DHCP, NAT + aging/expiry
- RPVST, LACP/LAG (+LB)
- FHRPs + SSO/NSF
- Controlled roots, HA priorities
- Static/dynamic routing, redistribution
- ECMP (+LB), costs/metrics
- RPF
Hardware Foundations

- Everything's finite
- RAM, CAM, TCAM
- Dedicated + shared buffers
- Timers + clocking rates
- Encapsulation, fragmentation
- Virtualisation = resource sharing
WAN Connectivity

• Different failure modes, SLAs
 • Internet, MPLS, Leased line
 • Wavelength, Dark fibre
 • Microwave, Satellite
• Loss, jitter due to queuing and QoS
Higher/Application Level
(Dynamic) Services

- DNS (bleugh WINS.. NIS?!)
- DHCP
- LDAP, AD/KRB, TACACS, RADIUS
- Load balancers
- Application proxies
- Firewalls, IPS
- ... Should all support logging + audit!
Application Latency

- RTT (BDP), loss, OOOPs
- DNS/Auth timeouts
- Host resource contention
- Crappy code
Tools
Your Tools

• Make them work for you
• Spend some time to learn and customise
• Configure shortcuts and keep cheatsheets
The Armoury

<table>
<thead>
<tr>
<th>Packet capture tools</th>
<th>Wireshark, tshark, dumpcap, editcap, mergecap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Editor</td>
<td>emacs/vi/vim, notepad++, TextMate</td>
</tr>
<tr>
<td>GNU tools</td>
<td>awk, sed, grep, cut, sort, uniq</td>
</tr>
<tr>
<td>Scanners/probes/active discovery</td>
<td>nmap, zmap, Angry IP, nessus, nc, portqry</td>
</tr>
<tr>
<td>Terminal emulator</td>
<td>PuTTY (+CM)</td>
</tr>
<tr>
<td>Quick references</td>
<td>cheatography.com, this new thing called google.com</td>
</tr>
<tr>
<td>Traffic/packet generators</td>
<td>iperf, hrping, scapy</td>
</tr>
</tbody>
</table>

examples, not necessarily endorsements
$#!@ Happens
The Perfect Storm

- Lurking inefficiencies
- Conflicting dynamic protocols
- Traffic growth, contention
- Lack/loss of resiliency
- Upgrades (any)
- Config changes
- The Boss is in town
Situational Awareness

• See it for yourself if possible
• Keep good notes
• Look out for patients lying (give them the opportunity to tell the truth)
• Many problems, not all are yours
 Not all problems are problems...
• Organisational factors
Tracing The Path

- L2 path: blockedports, root
- LACP load-share hashing
- L3 path: candidate routes in RIB
- FIB
- Load, loss, QoS
- Filtering, NAT, tunnelling
Got Root?
Test The Hypothesis

- Sanity-check the logic
- Be wary of extremely complex ideas
- Be wary of extremely simple ideas
- Explain it to yourself, question assumptions
- Double-check your measurements
- Bounce it off colleagues/peers
Prepare the ammunition

- Write up the case, be verbose
- Timeline often invaluable
- Include evidence
- Ensure all symptoms are addressed
- Proof read, re-read, peer review
- Be diplomatic rather than critical
- Line up fixes
Examples
1. 2K8Std + RAM + OOPs

- Users begin complaining that file transfers are slow
- 1Gbps bottleneck, 3ms RTT, <5Mbps?!
- Affected seemingly random hosts
- Multi-point packet capture
- Flow analysis
- In-line Crypto + HW Cfg/OS
2. Baseline test: ARP?

Q: How many ARPs per minute do you expect on a LAN?

• 10?
• 100?
• 1,000?
2. Baseline test: ARP?

Q: How many ARPs per minute do you expect on a LAN?

- Count request/response pair as 1
- 4x hosts (3 appliances, 1 Win2012)
- 4x L3 switches
- /24 subnet
2. Baseline test: ARP?

Q: How many ARPs per minute do you expect on a LAN?
 • Count request/response pair as 1
 • 4x hosts (3 appliances, 1 Win2012)
 • 4x L3 switches
 • /24 subnet

A: ... ~120,000 ARPs/min (WTF?)
2. Baseline test: ARP?

• Identified with Wireshark on Win2012
• 2x 10Gbps NICs across 2 switches (paired)
• Security software, including pre-boot network authorisation for full-disk encryption... suspicious!
3. 'Big' L2 domain flooding
3. 'Big' L2 domain flooding

- High utilisation reported on nearly every uplink (1Gbps)
- No observable negative impact