How Protocols Work

Presentation Overview

• The Challenge
• Understanding How Protocols Work
• Understanding How Applications Fail
The challenge:

- Companies today rely on computer based applications for every part of their business.
- When these applications are slow or fail, the company is not able to perform in an efficient manner.
- These application problems take time to resolve.
- By understanding the underlying protocols, we can shorten the time it takes to resolve problems.
How Protocols Work

Understanding How Protocols Work
Importance of Understanding Protocol Operation

• If you don’t understand how the primary protocols operate, you will not be successful in resolving network problems
• Most applications use the same key protocols
• Observing the operation of these protocols will help you to determine if the protocol is working correctly or operating improperly
Application Flow

- DNS Lookup
- ARP for Address
- Establish TCP Connection
- Send Request
- Receive Response
- Close Connection
Which Applications use this Flow?

- Web
- SQL
- Transaction processing
- Imaging
- Data Warehousing
- CRM
- ERP
DNS Lookup

- Required to resolve DNS Name to IP Address
- Can not proceed with application until this is complete
- Slow DNS servers can impact all applications for a company
- Found many instances where a client computer is using the wrong DNS server
DNS Lookup

www.nps-llc.com

64.78.44.114

192.41.162.30

.com name server

a.root-servers.net

nps-llc.com name server

205.178.190.36

www.nps-llc.com.gtld-servers.net

64.78.44.114

ns71.worldnic.com
DNS Lookup - Good

- Frame 8 – DNS Query For time-nw.nist.gov
- Frame 9 – DNS Response 131.107.1.10
- Response time 92.991 milliseconds
DNS Lookup - Bad

- Frame 1 – DNS Query For www.google.com
- Frame 9 – DNS Response 0.0.0.1
- Will this get us to www.google.com?

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000</td>
<td>192.168.1.200</td>
<td>4.2.2.2</td>
<td>DNS</td>
<td>Standard query A www.google.com</td>
</tr>
<tr>
<td>2</td>
<td>0.141895</td>
<td>4.2.2.2</td>
<td>192.168.1.200</td>
<td>DNS</td>
<td>Standard query response A 0.0.0.1</td>
</tr>
</tbody>
</table>
ARP for MAC Address

• Before we can send a frame, we MUST have the MAC address for the destination device
• The IP address is resolved to the MAC address using the Address Resolution Protocol (ARP)
• If we cannot resolve the IP address, or we get the wrong MAC address, we cannot get the frame to its destination
ARP Request

- Address Resolution Protocol (request)
 - Hardware type: Ethernet (0x0001)
 - Protocol type: IP (0x0800)
 - Hardware size: 6
 - Protocol size: 4
 - Opcode: request (0x0001)
 - Sender MAC address: Netgear_01:05:51 (00:09:5b:01:05:51)
 - Sender IP address: 192.168.10.21 (192.168.10.21)
 - Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)
 - Target IP address: 192.168.10.1 (192.168.10.1)
Address Resolution Protocol (reply)

- Hardware type: Ethernet (0x0001)
- Protocol type: IP (0x0800)
- Hardware size: 6
- Protocol size: 4
- Opcode: reply (0x0002)
- Sender MAC address: ZyxelCom_e5:c1:32 (00:a0:c5:e5:c1:32)
- Sender IP address: 192.168.10.1 (192.168.10.1)
- Target MAC address: Netgear_01:05:51 (00:09:5b:01:05:51)
- Target IP address: 192.168.10.21 (192.168.10.21)
ARP Cache

<table>
<thead>
<tr>
<th>Internet Address</th>
<th>Physical Address</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.1</td>
<td>00-16-b6-85-8b-20</td>
<td>dynamic</td>
</tr>
<tr>
<td>10.0.0.50</td>
<td>00-03-6d-1b-9d-a5</td>
<td>dynamic</td>
</tr>
<tr>
<td>10.0.0.51</td>
<td>00-13-d4-b2-85-37</td>
<td>dynamic</td>
</tr>
<tr>
<td>10.0.0.120</td>
<td>00-c0-17-a3-02-a1</td>
<td>dynamic</td>
</tr>
<tr>
<td>10.0.0.121</td>
<td>00-c0-17-a1-00-6e</td>
<td>dynamic</td>
</tr>
</tbody>
</table>
Route to Server

• Once we know the MAC address of the server or the default router the packets must be able to get from the client to the server
• The packets may always follow the same route, or take a different route each time
• If the packets are lost along this route the application will be slow
• If the packets are delayed along this route the application will be slow
Route to Server

C:\Documents and Settings\mpennac>tracert new.networkprotocolspecialists.com

Tracing route to new.networkprotocolspecialists.com [69.89.31.170]
over a maximum of 30 hops:

1 <1 ms <1 ms <1 ms rtr-rv082.nps-llc.com.local [10.0.0.1]
2 <1 ms <1 ms <1 ms h-66-134-176-241.sttnwaho.covad.net [66.134.176.241]
3 12 ms 10 ms 9 ms 172.31.255.253
4 13 ms 9 ms 10 ms 192.168.23.65
5 20 ms 8 ms 10 ms 66.236.9.169.ptr.us.xo.net [66.236.9.169]
6 49 ms 9 ms 10 ms p4-3-0.mar2.seattle-wa.us.xo.net [207.88.83.141]
7 8 ms 10 ms 10 ms p5-1-0-0.rar2.seattle-wa.us.xo.net [65.106.0.137]
8 88 ms 38 ms 41 ms p5-0-0-0.rar1.denver-co.us.xo.net [65.106.0.54]
9 52 ms 5 ms 52 ms p0-0-0-0.mar1.saltlake-ut.us.xo.net [65.106.6.82]
10 54 ms 51 ms 53 ms p1-0.chr1.saltlake-ut.us.xo.net [207.88.83.102]
11 51 ms 51 ms 53 ms ip65-46-48-66.z48-46-65.customer.algx.net [65.46.48.66]
12 54 ms 52 ms 52 ms box370.bluehost.com [69.89.31.170]

Trace complete.
Establish the Connection

• For this discussion, we will focus on TCP based applications
• Before data can be sent over a TCP connection, the connection must first be established
• This is done with the Three-way Handshake
 – Client sends a TCP SYN packet
 – Server responds with at TCP SYN/ACK
 – Client responds with a TCP ACK
• The delta time between the TCP SYN and the TCP SYN/ACK represents the roundtrip delay of the circuit
Establish the Connection

• The device establishing the connection will send a beginning TCP sequence number.

• It is important to note that Wireshark converts this to a relative sequence number.

• For example:
 – The initiating device may use a sequence number of 253875.
 – Wireshark will display it as sequence number 0.
Establish the Connection

- The server will respond with its own starting TCP sequence number and an Acknowledgement Number equal to the initiator’s Sequence Number plus 1.
- The initiator will respond with an Acknowledgement Packet with an Acknowledgement Number equal to the server’s Sequence Number plus 1.
- Once this occurs, the connection is established.
Establish Connection

<table>
<thead>
<tr>
<th>Time</th>
<th>192.168.10.20</th>
<th>198.238.212.10</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.108</td>
<td>(4322)</td>
<td>(80)</td>
<td>Seq = 0</td>
</tr>
<tr>
<td>17.134</td>
<td>(4322)</td>
<td>(80)</td>
<td>Seq = 0 Ack = 1</td>
</tr>
<tr>
<td>17.134</td>
<td>(4322)</td>
<td>(80)</td>
<td>Seq = 1 Ack = 1</td>
</tr>
</tbody>
</table>

SYN

SYN, ACK

ACK
Establish Connection

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>382</td>
<td>17.108122</td>
<td>192.168.10.20</td>
<td>198.238.212.10</td>
<td>TCP</td>
<td>trim-event > http [SYN]</td>
</tr>
<tr>
<td>383</td>
<td>0.026263</td>
<td>198.238.212.10</td>
<td>192.168.10.20</td>
<td>TCP</td>
<td>http > trim-event [SYN,</td>
</tr>
</tbody>
</table>
Sending the Request

• Now that the connection is established, we send our request.

• This request may be for:
 – An object on a webpage
 – A field in a database
 – A server side transaction
 – A segment of a file from a file server

• In most cases, we will halt further processing until we receive a response to this request.
TCP ACK

- If it takes a long time to get a response to the request, TCP may acknowledge the TCP data segment, even though there is no data to return.
- This indicates that the packet was received by the server, but it is taking longer than 200ms to return the requested data.
- This tells us that the network is working fine, but the server may be slow.
Send Request – Get Response

• The example below shows a HTTP Get and HTTP Get Response
• Frame 1 – HTTP GET
• Frame 2 – TCP Ack from the server
• Frame 3 – Data Frame from the server
• The Ack indicates that the TCP frame reached the server within 125 milliseconds, but it took 4.8 seconds to get the data

<table>
<thead>
<tr>
<th>No.</th>
<th>Time</th>
<th>Source</th>
<th>Destination</th>
<th>Protocol</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000000</td>
<td>192.168.0.3</td>
<td>167.187.3.153</td>
<td>HTTP</td>
<td>GET / HTTP/1.1</td>
</tr>
<tr>
<td>2</td>
<td>0.125025</td>
<td>167.187.3.153</td>
<td>192.168.0.3</td>
<td>TCP</td>
<td>http > telindus [ACK] Seq=1 Ack=349</td>
</tr>
<tr>
<td>3</td>
<td>4.851946</td>
<td>167.187.3.153</td>
<td>192.168.0.3</td>
<td>TCP</td>
<td>[TCP segment of a reassembled PDU]</td>
</tr>
</tbody>
</table>
Closing the Connection

• After the requests and responses are complete the connection is closed
• There may be multiple request/response pairs for a single connection
• In most cases the application does not pause for the connection close process
Close Connection

```
208 0.144945  192.168.0.3  128.11.10.249  TCP  proxim > http [ACK] Seq=1843
272 1.060079  128.11.10.249 192.168.0.3  TCP  http > proxim [FIN, ACK] Seq=
273 0.000150  192.168.0.3  128.11.10.249  TCP  proxim > http [ACK] Seq=1843
283 4.854511  192.168.0.3  128.11.10.249  TCP  proxim > http [RST] Seq=1843
```

```
http > proxim [FIN, ACK]
proxim > http [ACK] Seq=1843
proxim > http [RST] Seq=1843
```
Understanding How Applications Fail
DNS

- Slow DNS Server
- Wrong DNS Server
- No A record for name being queried
- Bad response by DNS server
- Slow PTR record lookup
- Packet loss between client and DNS server
ARP

- Duplicate IP Addresses
- Proxy ARP
- No response from server
- Wrong MAC address returned
Routing

- Bad routes
- Packet loss along route
- High delay along route
Connection Setup

- Port not open on server
- Server slow to respond to TCP connection request
- Load balancer problems
- Packet loss during setup. TCP retransmission time for connection setup is 3 seconds!
Request/Response

- Server slow to respond to request
- Request packet lost
- Packet loss
- Server can’t find requested data
Closing the Connection

• Client uses Reset to close connection, this works but not the right way to close a connection
• Client leaves connection open for a long time, using up valuable resources on the server
• FIN packets are lost
How to contact us at gearbit

Ray Tompkins

info09@gearbit.com
www.gearbit.com