
SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

A Variety of Ways to Capture and Analyze Packets:
A Network Engineer’s Perspective

Timothy Chung
June 15, 2010

SHARKFEST ‘10
Stanford University
June 14-17, 2010

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Agenda

• Why Packet Capture
• Types of port mirroring
• Case Study: Browser hangs
• TAPs, SPAN, RSPAN, ERSPAN,
• ERSPAN Sample Config
• Mini Protocol Analyzer
• Case Study: Voip Phone
• Capture Exception Traffic to CPU
• Case Study: High CPU
• VACL Granularity, VACL Redirect
• Case Study: Network Congested

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Why Packet Capture

• Validate proper protocol behavior

• Troubleshoot performance related issues

• Validate QoS ToS markings

• Troubleshoot “complex” network problems

• Identify anomalous traffic flows

• The smoking gun/definitive proof

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Sniff Directly on hosts

• Get sniff of both client and server ends, if possible

• E.g., Run wireshark/tshark on client and server

• Pro: Extremely convenient

• Con: Inband sniffing “may” exacerbate issue, not truly passive; Can’t install
wireshark on IP Phone end nodes

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Case Study: Frozen Browser

• Some users complain that their browsers are frozen
intermittently on one particular website only

• The same website is fine if used from DSL line

• Pcap captured at client OS

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Traceroute

root@nsx:/# tcptraceroute -n www.example.com
traceroute to www.example.com (5.1.1.222), 30 hops max, 40 byte
packets
1 192.168.1.253 0.297 ms 0.334 ms 0.408 ms
2 192.168.2.253 0.400 ms 0.484 ms 0.529 ms
3 1.1.1.1 0.349 ms 0.435 ms 0.438 ms
4 1.1.2.253 0.344 ms 0.402 ms 0.396 ms
5 1.1.3.254 0.433 ms 0.499 ms 0.624 ms
6 2.1.1.60 1.624 ms 2.092 ms 2.030 ms
7 2.1.2.230 39.054 ms 38.999 ms 38.912 ms
8 2.1.3.170 31.191 ms 2.618 ms 3.009 ms
9 2.1.4.210 28.441 ms 28.842 ms 28.346 ms
10 5.5.5.67 54.165 ms 53.608 ms 54.176 ms
11 5.5.4.26 53.782 ms 53.390 ms 53.328 ms
12 5.1.1.222 53.015 ms 52.941 ms 53.618 ms

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TAPs

• Deploy inline TAPs to capture data flow
• Pro: Truly passive, no frame drops by TAP
• Con: Another device to deploy, placement of TAP critical, cost

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Port Mirroring

• Port mirror traffic on the switches to dedicated sniffer

• Pro: Convenient, port mirroring/SPAN feature included in
most modern switches

• Con: Typically, 2 Span session limitation, dropped frames
during oversubscription, Added latency of 20 MicroSeconds,
Not truly passive technology, Multiple sniffers required

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Local Port Mirror (SPAN)

• Mirrors traffic from interface to another
Switch(config)#monitor session 1 source interface Gi0/0
Switch(config)# monitor session 1 destination interface Gi0/48

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Remote SPAN (RSPAN)
• Mirrors traffic from one interface on switch1 to a special L2 RSPAN VLAN across a

trunk to switch2, which mirrors the traffic from the RSPAN VLAN to local interface

Switch1(config)#monitor session 1 source interface Gi0/48
Switch1(config)# monitor session 1 destination remote vlan 101
Switch2(config)#monitor session 2 source remote vlan 101
Switch2(config)# monitor session 2 destination interface Gi0/0

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Encapsulated SPAN

• Mirrors traffic from one interface on switch1 into an IP GRE
tunnel across arbitrary number of Layer 3 hops to destination
switch, which decapsulates and mirrors traffic to its local
interface.

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

ERSPAN

• Encapsulate entire Ethernet Frame in GRE

• Adds 50 Byte header

• DF bit is set to prevent fragmentation

• GRE Header protocol type of 0x88BE

• PFC3 and above supports ERSPAN (sup720, sup32)

• Cisco ASR supports ERSPAN as well

• ERSPAN ID uniquely identifies source sessions

• Full 1500 Byte packets cause performance Issue
unless you use jumbo frames for interswitch links!

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Sample ERSPAN Run

Source of ERSPAN:
Switch1#sh run | b monitor
monitor session 3 type erspan-source
source interface Gi1/1 <====host1 is connected here
destination
erspan-id 3
ip address 5.5.5.68 <===IP of switch2 used for erspan
origin ip address 192.168.1.33 <===IP of int on switch1

Destination of ERSPAN:
Switch2#sh run | b monitor
!
monitor session 1 type erspan-destination
destination interface Gi2/3 <====sniffer attached here
source
erspan-id 3
ip address 5.5.5.68

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Mini Protocol Analyzer (Catalyst 6500)

• Captures traffic on an access port on the local switch
and stores the captured packets in a local memory
buffer for local or remote analysis

• Cat6500 SXH Release or later

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Sample Capture Session

switch1(config)#monitor session 3 type capture
switch1(config-mon-capture)#buffer-size 65535
switch1(config-mon-capture)#source interface gi4/15 both

switch1#sh monitor capture
Capture instance [1] :
======================
Capture Session ID : 3
Session status : up
rate-limit value : 10000
redirect index : 0x809
buffer-size : 2097152
capture state : OFF
capture mode : Linear
capture length : 68

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Export Capture

switch1#monitor capture length 1500 start

switch1#monitor capture stop

switch1#monitor capture export buffer disk0:cap1.pcap

Copying capture buffer of session [3] to location disk0:cap1.pcap

switch1#copy disk0:cap1.pcap scp:

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Case Study: IP Phone on Infinite Reboot

• To support PC plugged behind IP Phone, there needs
to be 2 distinct vlans – Voice for phone and Data for
PC

• How does an IP phone know how to get itself into
the voice vlan but place PC into Data?

• Cannot sniff directly on the IP Phone

• Use ERSPAN or Mini Protocol Analyzer

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Sniff Traffic Punted to CPU

• Capture Traffic punted to CPU/Routing Engine

• Capture software processed/exception packets

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Example Config

• Cisco Catalyst 6500
Switch1(config)#monitor session 2 type local
Switch1 (config-mon-local)#source cpu rp tx
Switch1(config-mon-local)#destination interface gi4/15
Switch1 (config-mon-local)#no shut

• Juniper
tim@R1> monitor traffic interface xe-0/0/0 no-resolve size 1500 write-file a.pcap

Address resolution is OFF.

Listening on xe-0/0/0, capture size 1500 bytes

^C

33 packets received by filter

0 packets dropped by kernel

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Case Study: High CPU

Switch1#sh proc cpu | e 0.00

CPU utilization for five seconds: 96%/96%; one minute: 39%; five minutes: 17%

PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
65 25768 26618 968 3.67% 0.96% 0.36% 1 SSH Process

262 62028 300722 206 59.43% 14.07% 4.97% 0 IP Input
449 6164 47191 130 0.23% 0.07% 0.06% 0 Port manager per

• Help! How do I identify what is causing this high CPU?

• Use in-band sniffing!

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

TTL Expiry on Catalyst 6500

•Traceroute and mtr are legitimate use of TTL expiry
• If transit packet has TTL=1, then punt to CPU for processing

RP CPU Percentage

0%

20%

40%

60%

80%

100%

10
 p
ps

98
3
pps

29
95

 p
ps

49
77

 p
ps

69
50

 p
ps

98
87

 p
ps

Packet Per Second

C
P

U
 P

e
rc

e
n

ta
g

e

CPU %

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Capture Granularity

• You can use VACL to target specific protocols
• Supported on Catalyst 6500

vlan access-map AMAP 10
match ip address http_acl
action forward capture
vlan access-map AMAP 20
match ip address telnet_acl
action forward capture
!
vlan filter AMAP vlan-list 999
!

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Capture Granularity

ip access-list extended http_acl
permit tcp any any eq www
permit tcp any eq www any
!
ip access-list extended telnet_acl
permit tcp any any eq telnet
!
interface GigabitEthernet6/37
switchport capture
switchport capture allowed vlan 999

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Sent to Multiple Analyzers

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

VACL Redirect to Multiple Interfaces

• You can split traffic and redirect to different interfaces
! vlan access-map SPLIT-to-3Dest 10

match ip address http_acl
action redirect GigabitEthernet6/26

vlan access-map SPLIT-to-3Dest 20
match ip address telnet_acl
action redirect GigabitEthernet6/27

vlan access-map SPLIT-to-3Dest 30
match ip address udp_acl
action redirect GigabitEthernet6/28
!
vlan filter SPLIT-to-3Dest vlan-list 999

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

VACL Redirect to Multiple Interfaces

ip access-list extended telnet_acl
permit tcp any any eq telnet
ip access-list extended udp_acl
permit udp any any
ip access-list extended http_acl
permit tcp any any eq www
permit tcp any eq www any

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Case Study: Network Congested

• Developer files a ticket with network team claiming
severe packet drops for his application

• Network team says everything appears to be ok

Racksw1#sh int gi6/36 | i rate
Queueing strategy: fifo
30 second input rate 21578001 bits/sec, 2001 packets/sec
30 second output rate 11578000 bits/sec, 1411 packets/sec

Racksw1#sh int gi6/36 | i drops
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total

output drops: 3558

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Utilization Graph

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Topology

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Proof is in Wireshark

tim@nsx:~/$ capinfos burst.pcap
File name: burst.pcap
File type: Wireshark/tcpdump/... - libpcap
File encapsulation: Ethernet
Number of packets: 4360
File size: 2284664 bytes
Data size: 2214880 bytes
Capture duration: 0.018531 seconds
Start time: Sun Jun 6 13:51:28 2010
End time: Sun Jun 6 13:51:28 2010
Data rate: 119522419.34 bytes/s
Data rate: 956179354.75 bits/s
Average packet size: 508.00 bytes

SHARKFEST ‘10 | Stanford University | June 14 –17, 2010

Questions?

