Tuesday June 14, 2011. 3:30pm – 4:45pm

Jasper Bongertz
Senior Consultant | Fast Lane Institute for Knowledge Transfer
- Uh, Cloud?
- Physical vs. Virtual
- Cluster Basics
- VMs on the Move
- Capture Methods
„Cloud“ - Terminology

• Using Cloud resources means
 – Servers and locations are more or less irrelevant
 – You don’t know where your „stuff“ actually is

• Resources may be
 – shared between multiple users/teams/companies
 – paid for what is actually used, when it’s used

• Offering OS platforms, installation platforms, software catalogs

• Allows self service access to shared computing resources
Cloud types

• Private cloud
 – Hosted on private virtualization servers
 – Offering services to internal users/teams

• Public cloud
 – Offering services to anyone („with a credit card“)

• Hybrid cloud
 – Mix of private and public cloud
 – Usually used to outsource computing power in times of high usage, or as fallback
Virtual Environments

- Virtual Environments consolidate multiple servers on one or more virtualization hosts
- Physical hardware runs an virtualization layer with virtualized servers on top
- Virtual Servers share
 - CPU cycles and memory
 - Storage
 - Network adapters
Enterprise Virtualization

• Common virtualization solutions found in datacenters today are:
 – Citrix XenServer
 – Microsoft Hyper-V
 – Red Hat Enterprise Virtualization
 – VMware vSphere

• Basically all enterprise virtualization solutions have the same basic features
 – or will have them sooner or later
• Virtualization host runs multiple Virtual Machines on a single NIC
• The host may use the NIC for its own data communication, too
• Potentially dozens of virtual servers showing up with their own virtual MAC address on the physical NIC
Capturing virtual servers

- In virtual/cloud environments, virtual servers, applications, services may run everywhere.
- Multiple virtual servers on physical hosts share network cards.
- If you have access to the virtualization host you can SPAN/TAP its connections.
- Challenges:
 - Find and capture the correct NIC.
 - Isolate traffic for the virtual server/application.
 - Servers with 10GBit or even faster links.
Host Virtualization Example #2

- There may also be „internal only“ switches making things complicated
- Data on internal switches never leaves the virtualization host
- No physical pickup possible
NIC Teaming Strategies

- Port ID based
- Source MAC hash
- Source/Destination IP hash
- Based on physical NIC load
Virtualization Cluster Basics

Trouble Brewing
Virtualization Cluster Example

- Group of virtualization hosts combined into a cluster
Cluster Basics

• Server clusters are always difficult to capture
 – Even without virtualization you usually don’t know where the connection will end up

• Possible solutions include
 – Forcing specific connections to certain cluster members that can be captured
 – Capturing a common cluster uplink if available
 – Las Vegas style: capture somewhere and hope that you’ll catch the relevant frames 😊
Virtualization Clusters

• Virtualization clusters are even more complex than clusters of physical servers
 – Load Balancing of virtual machines
 – High Availability / Failover
• Virtual machines may move from host to host without warning, at any given time!
• Requires shared storage
 – Fibre Channel, iSCSI, NFS
 – Lets better hope you never have to capture those... unless you like megatons of data
VMs on the move
Live Moving of Virtual Machines

- Virtual Machines may move from host to host while running

![Diagram showing live moving of virtual machines](image-url)
Cluster Movement Features

• High Availability (sort of)
 – Restart virtual machines on other hosts if there is a host crash
• Real High Availability
 – Running an “invisible” hot standby VM on a secondary host that is kept in sync
• Fully automatic live VM moving
 – Load Balancing virtual machines across virtualization hosts
Capture Strategies
Capture Strategy #1

• Install Wireshark on the virtual system of interest

• Advantages:
 – Can capture, even on VMs with internal only NICs
 – Sometimes your only option

• Disadvantage:
 – Changes the environment
 – Gets funny results (way too often)
 – May crash the VM
Capture Strategy #2

• Capture at virtualization host uplink (TAP/SPAN)

• Maybe your only option when you have no better access to the virtual infrastructure

• Advantages:
 – Easy to do in simple setups
 – Usually gets good data
 – Most familiar way to get data since it's similar to physical captures
• Disadvantages:
 – May get you tons and tons of data to sort
 – Server uplink may be too fast for your capture device or the SPAN port
 – VM may be live-moved off the server, interrupting the capture
 – Worst case: you don’t even know where to capture!
Ways to handle “too much data“ (a.k.a „dropped frames“) on physical captures:

– use frame slicing if possible
– SPAN only as few affected ports or VLANs as possible
– use a filtering TAP
– Capture Filters on the Wireshark itself may help, too
– Use dumpcap on command line
New Capture Strategies

Virtual captures for a virtual environment
New Capture Strategies

• Virtualization technologies may or may not offer additional capture strategies
• The big question usually is „what can you do with that virtual switch?“
• Worst case: the vSwitch behaves like a dumb switch (a.k.a. Desktop Switch) – out of luck
• Promiscuous Mode on virtual switch or port group
 – Puts switch/port group into „hub“ mode
 – Security risk
 – Increased traffic

• Virtual SPAN sessions
 – Only on some devices, like Cisco Nexus 1000v

• Virtual TAPs
 – Probably: additional license required
 – Installation/configuration ain’t exactly child’s play
No more slides (yay!)... so let's demo!
Questions?