BI-11 Inside the TCP Handshake
June 26, 2012

Betty DuBois
Chief Network Investigator | DuBois Training & Consulting, LLC
Betty@DTCpackets.com

SHARKFEST ‘12
UC Berkeley
June 24-27, 2012
• Goals of the TCP handshake
• Beginning sequence numbers
• Options
Let’s Go Live!

- Start a Wireshark capture
- Using your favorite **FTP** client:
 - User: anonymous
 - Password: whatever
- Click on any of the documents, let it load and then stop your capture.
- Right click on any **ftp** packet, and “follow the TCP stream”
- Or use “Owen – Windows7client.pcapng” as example
Goals of the Handshake

1. Is destination port open?
2. Notification of opened ephemeral port
3. Notification of each sides beginning sequence #
4. Notification of each sides receive window size
5. Option negotiation
Beginning Sequence #'s

• Each side will give their starting sequence number
• They will be different on each side
• The TCP stack uses them for byte count
• Wireshark will show relative numbers so it looks as if both sides start at zero.
 – The numbers are relative to the source IP and source port (i.e. socket)
 – The beauty is using them to see how deep you are into the data transfer at any given point
Open Negotiation

- Silence means NO
- MSS
- Window Scaling
- SACK
- Time Stamps
Silence means NO

- There is not a negative ACK/NACK
- So if a host does not support an option:
 - There is no request from the client
 - Or
 - There is no mention of the option in the server's response
How much TCP Data can fit in a single packet?

Implementation is that lowest number wins

Ethernet standard frames. No jumbo frames, no 802.1q tags.
Minimum Frame = 64
Maximum Frame = 1518
On Wireshark, this displays as 60-1514, because the CRC is gone

<table>
<thead>
<tr>
<th></th>
<th>Max Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1518</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>DA</td>
</tr>
<tr>
<td>-6</td>
<td>SA</td>
</tr>
<tr>
<td>-2</td>
<td>ET</td>
</tr>
<tr>
<td>-4</td>
<td>CRC</td>
</tr>
</tbody>
</table>

DLC = 18 bytes

<table>
<thead>
<tr>
<th></th>
<th>MTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td>IP</td>
</tr>
<tr>
<td>-20</td>
<td>TCP</td>
</tr>
</tbody>
</table>

IP = 20 – 60 bytes (20 is default)
TCP = 20 – 60 bytes (20 is default)

1460 MSS
Window Scaling

- Both sides must support, but do not have to agree on amount
- Simply a way to take advantage of bigger buffers
Selective Ack - SACK

- Both sides must support
- ACK field is always cumulative data
- SACK field is for the data after last segments
- Room for 2 SACK sections in the options section
- Once data is sacked it can be flushed from the sender’s TCP window
Both sides must support

Goals:
- More granular Round Trip Time (RTT) measurements
- Tie-breaker when sequence number wraps aka Protect Against Wrapped Sequence (PAUSE)

RFCs
- 1323
- 3522

Use “Betty_LionClient.pcapng” for example
“Special” Options

- Many devices “optimize” traffic.
- They may/can/will have their own special handshake to set up the session between themselves unbeknownst to the true client and server.
 - Load Balancers
 - WAN Optimizers
 - Traffic Shapers
- Use the traces “FromSteelheadProbe.pcap” or “SteelheadMobile.Pcap” for examples
“Special” Options

- Riverbed® Steelhead®
Questions?