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Introduction to Reassembly Features 

 Reassembly works within: 

o IP 

o TCP 

o SSL 

 Can be toggled via different ways 

 Default: All features turned ON 



Hands-on time! 

 Fire up your Wireshark and capture your 

traffic (highly recommended) 

 Go to: 

 www.packet-foo.com/SF14/Data.bmp  

 

 Alternatively click along using the sample 

captures: 

 www.packet-foo.com/SF14/B10.zip  

 



Focus: TCP Stream Reassembly 

 Regularly used withing network analysis 

 Enables reconstruction of segmented 

payload 



Let‘s do some network analysis 

 Use case: Application Server Analysis 

o To be analyzed: Application response times 

o Simple with HTTP: delta time Request <> Response 



Going from request to response 

 Simple with delta displayed 

o Remember to filter for single TCP sessions before 

o Refer to Round-Trip-Time (RTT) for real application 

response time, depending where the capture was 

taken 



How about our important data? 

 Check webserver application response time 

That‘s a fast one !! 



Questions up to here? 

 Everybody agrees on the timings? (roughly if 

captured by yourself) 

 

 Anyone having strange behavior with his/her 

Wireshark version? 



That‘s where reassembly kicks in 

 Watch the difference: 



Side-Effects within TCP Reassembly 

 Possible Re-Ordering of INFO-Column 

statements within the packet list 

 Affects display filters too (e.g. http.response) 

 Changes to the labeling of the „protocol“ 

column within Wireshark 
 Also possibly affects display filters, statistics etc. 



Side-Note: Wireshark Bugs #1? 

 Filter for all HTTP request and HTTP 

responses 

  GUI export or tshark 

 Save into new capture file and open for 

analysis 



Side-Note: Wireshark Bugs #2? 

 Check the protocol hierarchy statistics 

 Watch for HTTP percentage 

 Try to explain the different results based on 

reassembly setting 



No bugs of course! 

 Yet more side-effects of reassembly 

 Valid output, but strongly dependent on the 

question you ask: 
o Time until start OR end of data stream delivery 

o Statistics of ALL HTTP-related packets, meaning 

tcp.port==80  

 OR 

 All HTTP-related packets containg data (without 

ACKs, Handshake etc.) 

 OR 

 Just the Requests and Response packets 



Best practices 

 Watch carefully ! 

 Use separate Profiles 
o Turn off reassembly for any timing / statistics based 

analysis tasks 

o Turn on reassembly for content analysis / forensics 

 Check your default profile, since it is the 

base setting for tshark on command line 

level 

 



!! Thank you for your attention !! 

        Q / A 


