
B10 - Understanding Wireshark’s
Reassembly Features

Christian Landström, Senior Consultant

Airbus Defence and Space

Agenda

 Introduction to Reassembly Features

 Use cases where Reassembly is used

 Side effects of the feature stack

 Best practices and recommendations

Introduction to Reassembly Features

 Reassembly works within:

o IP

o TCP

o SSL

 Can be toggled via different ways

 Default: All features turned ON

Hands-on time!

 Fire up your Wireshark and capture your

traffic (highly recommended)

 Go to:

 www.packet-foo.com/SF14/Data.bmp

 Alternatively click along using the sample

captures:

 www.packet-foo.com/SF14/B10.zip

Focus: TCP Stream Reassembly

 Regularly used withing network analysis

 Enables reconstruction of segmented

payload

Let‘s do some network analysis

 Use case: Application Server Analysis

o To be analyzed: Application response times

o Simple with HTTP: delta time Request <> Response

Going from request to response

 Simple with delta displayed

o Remember to filter for single TCP sessions before

o Refer to Round-Trip-Time (RTT) for real application

response time, depending where the capture was

taken

How about our important data?

 Check webserver application response time

That‘s a fast one !!

Questions up to here?

 Everybody agrees on the timings? (roughly if

captured by yourself)

 Anyone having strange behavior with his/her

Wireshark version?

That‘s where reassembly kicks in

 Watch the difference:

Side-Effects within TCP Reassembly

 Possible Re-Ordering of INFO-Column

statements within the packet list

 Affects display filters too (e.g. http.response)

 Changes to the labeling of the „protocol“

column within Wireshark
 Also possibly affects display filters, statistics etc.

Side-Note: Wireshark Bugs #1?

 Filter for all HTTP request and HTTP

responses

 GUI export or tshark

 Save into new capture file and open for

analysis

Side-Note: Wireshark Bugs #2?

 Check the protocol hierarchy statistics

 Watch for HTTP percentage

 Try to explain the different results based on

reassembly setting

No bugs of course!

 Yet more side-effects of reassembly

 Valid output, but strongly dependent on the

question you ask:
o Time until start OR end of data stream delivery

o Statistics of ALL HTTP-related packets, meaning

tcp.port==80

 OR

 All HTTP-related packets containg data (without

ACKs, Handshake etc.)

 OR

 Just the Requests and Response packets

Best practices

 Watch carefully !

 Use separate Profiles
o Turn off reassembly for any timing / statistics based

analysis tasks

o Turn on reassembly for content analysis / forensics

 Check your default profile, since it is the

base setting for tshark on command line

level

!! Thank you for your attention !!

 Q / A

